Differentiation

$$(cu)' = cu'$$
 (c constant)

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$\frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx}$$
 (Chain rule)

Cauchy-Riemann equations⁴

$$u_x = v_y, u_y = -v_x$$

$$u_r = \frac{1}{r} v_\theta, \qquad v_r = -\frac{1}{r} u_\theta$$

$$\ln z = \ln r + i\theta$$
 $(r = |z| > 0, \quad \theta = \arg z).$

generalized triangle inequality

$$u_y = -v_x$$
 $|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|;$

 $\sqrt[n]{z}$, for $z \neq 0$, has the *n* distinct values

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$

Ln z (Ln with capital L) and is called the **principal value** of ln z. Thus

$$\operatorname{Ln} z = \ln|z| + i \operatorname{Arg} z$$

$$(z \neq 0)$$
.

$$(x^n)' = nx^{n-1}$$

$$(e^x)' = e^x$$

$$(e^{ax})' = ae^{ax}$$

$$(a^x)' = a^x \ln a$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \sec^2 x$$

$$(\cot x)' = -\csc^2 x$$

$$(\sinh x)' = \cosh x$$

$$(\cosh x)' = \sinh x$$

$$(\ln x)' = \frac{1}{x}$$

$$(\log_a x)' = \frac{\log_a e}{r}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(\arctan x)' = \frac{1}{1 + x^2}$$

$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

For arithmetic operations with complex numbers

(1)
$$z = x + iy = re^{i\theta} = r(\cos\theta + i\sin\theta),$$

 $r = |z| = \sqrt{x^2 + y^2}$, $\theta = \arctan(y/x)$, and for their representation in the complex plane, see Secs. 13.1 and 13.2.

A complex function f(z) = u(x, y) + iv(x, y) is **analytic** in a domain D if it has a **derivative** (Sec. 13.3)

(2)
$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

everywhere in D. Also, f(z) is analytic at a point $z=z_0$ if it has a derivative in a neighborhood of z_0 (not merely at z_0 itself).

If f(z) is analytic in D, then u(x, y) and v(x, y) satisfy the (very important!) Cauchy-Riemann equations (Sec. 13.4)

(3)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

everywhere in D. Then u and v also satisfy Laplace's equation

(4)
$$u_{xx} + u_{yy} = 0, \quad v_{xx} + v_{yy} = 0$$

everywhere in D. If u(x, y) and v(x, y) are continuous and have *continuous* partial derivatives in D that satisfy (3) in D, then f(z) = u(x, y) + iv(x, y) is analytic in D. See Sec. 13.4. (More on Laplace's equation and complex analysis follows in Chap. 18.)

The complex exponential function (Sec. 13.5)

(5)
$$e^z = \exp z = e^x (\cos y + i \sin y)$$

reduces to e^x if z = x (y = 0). It is periodic with $2\pi i$ and has the derivative e^x . The trigonometric functions are (Sec. 13.6)

(6)
$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz}) = \cos x \cosh y - i \sin x \sinh y$$
$$\sin z = \frac{1}{2i}(e^{iz} - e^{-iz}) = \sin x \cosh y + i \cos x \sinh y$$

and, furthermore.

$$\tan z = (\sin z)/\cos z$$
, $\cot z = 1/\tan z$, etc.

The hyperbolic functions are (Sec. 13.6)

(7)
$$\cosh z = \frac{1}{2}(e^z + e^{-z}) = \cos iz$$
, $\sinh z = \frac{1}{2}(e^z - e^{-z}) = -i\sin iz$

etc. The functions (5)-(7) are entire, that is, analytic everywhere in the complex plane.

The natural logarithm is (Sec. 13.7)

(8)
$$\ln z = \ln|z| + i \arg z = \ln|z| + i \operatorname{Arg} z \pm 2n\pi i$$

where $z \neq 0$ and $n = 0, 1, \cdots$. Arg z is the principal value of arg z, that is, $-\pi < \text{Arg } z \leq \pi$. We see that $\ln z$ is infinitely many-valued. Taking n = 0 gives the principal value Ln z of $\ln z$; thus $\text{Ln } z = \ln|z| + i \text{ Arg } z$.

General powers are defined by (Sec. 13.7)

$$z^e = e^{e \ln z} \qquad (c \text{ complex}, z \neq 0).$$