University of Texas at Arlington EE 2403 Fall 2015 Quiz 3A ID:

LAST NAME

FIRST NAME

Problem 1

- A) Given $R=300 \Omega \& V_{ss}=6.0 \text{ V}$ Draw the DC load line.
- B) Use graphical method to obtain the Q point and write down the approximate values for I_Q and V_Q .
- C) Use graphical method to obtain the value of r_d at the Q point.
- D) Repeat A), B), and C) for $V_{ss} = 1.5$ V.

ANSWERS (draw tangents as accurately as possible)

V_{ss} (V)	$V_{DQ}(V)$	I _{DQ} (mA)	$r_{dQ}(\Omega)$
6.0	1.2	16.0	15.6
1.5	0.8	2.5	80.0

University of Texas at Arlington EE 2403 Fall 2015 Quiz 3A ID:

LAST NAME

FIRST NAME

Problem 1 continued

Unit convention:
$$[R] = k\Omega$$
 $[i] = mA$ $[v] = V$

$$[i] = mA$$

$$[v] = V$$

Load Lines:

 $KVL \implies v_D = V_{SS} - Ri_D$ This represents a straight line in the $v_D - i_D$ space (load line)

Drawing Load Lines:

Find two points on the line by choosing two values of i_D and the corresponding v_D values.

Case 1:
$$V_{SS} = 6V$$
: $v_D = 6 - 0.3i_D$.

For example A₁: choose
$$i_D = 20 \Rightarrow v_D = 0$$
 B₁: choose $i_D = 15 \Rightarrow v_D = 1.5$

$$B_1$$
: choose $i_D = 15 \Rightarrow v_D = 1.5$

Case 2:
$$V_{SS} = 1.5V$$
: $V_D = 1.5 - 0.3i_D$.

For example A₂: choose
$$i_D = 0 \Rightarrow v_D = 1.5$$
 B₂: choose $v_D = 0 \Rightarrow i_D = 5$

Q-point: Interception of load line with Diode IV curve

Dynamic Resistance:
$$r_{dQ} = \frac{1}{slope \ of \ tangent} = \frac{triangle \ base}{triangle \ height}$$

Case 1:
$$r_{dQ} = \frac{0.25 \text{ V}}{16 \text{ mA}} = 15.6 \Omega$$
 Case 2: $r_{dQ} = \frac{0.2 \text{ V}}{2.5 \text{ mA}} = 80 \Omega$

Case 2:
$$r_{dQ} = \frac{0.2 \text{ V}}{2.5 \text{ mA}} = 80 \Omega$$

University of Texas at Arlington EE 2403 Fall 2015 Quiz 3A ID:

LAST NAME

FIRST NAME

Problem 2

Op Amp input resistance is ∞ , output resistance is 0, and open loop gain is ∞ and the power supplies are at +10 and -10 V. R_1 =4 k Ω , R_2 =2 k Ω , and R_L =2 k Ω . Vin =2 V. Find V_o .

Solution:

Assume Op Amp is operating in Linear Region *then* $v_N = v_P$

$$\therefore v_N = 2V$$

NodeVoltage Equations

$$\begin{cases} \frac{v_N}{R_1} + \frac{v_N - v_A}{R_2} = 0 & \Rightarrow \frac{2}{4} + \frac{2 - v_A}{2} = 0 \Rightarrow 2 + 4 - 2v_A = 0 \Rightarrow v_A = 3V \\ \frac{v_A}{R_1} + \frac{v_A - v_N}{R_2} + \frac{v_A - v_0}{R_2} = 0 & \Rightarrow \frac{3}{4} + \frac{3 - 2}{2} + \frac{3 - v_0}{2} = 0 \Rightarrow 3 + 2 + 6 - 2v_0 = 0 \Rightarrow v_0 = 5.5 V \end{cases}$$

Note that $-10 < 5.5 < +10 \Rightarrow -10 < v_0 < +10 \Rightarrow$ **Original Assumption IS valid.**

$$I_{Op\,Amp} = \frac{v_0 - v_A}{R_2} + \frac{v_0}{R_L} \implies I_{Op\,Amp} = \frac{5.5 - 3}{2} + \frac{5.5}{2} = 4A$$